Economics 113 Professor Spearot
Introduction to Econometrics
Fall 2010 - Midterm 3
Name \qquad ID

Midterm 3-65 Points

You must answer all questions. Please write your name on every page. The exam is closed book and closed notes. You may use calculators, but they must not be graphing calculators. No cell phones. Do not use your own scratch paper.

You must show your work to receive full credit

I have neither given nor received unauthorized aid on this examination, nor have I concealed any similar misconduct by others.

Signature \qquad

Problem 1 (50 Points)

Suppose that you wish to predict wage outcomes via the following specification:

$$
\log (\text { wage })=\beta_{0}+\beta_{1} \text { educ }+\beta_{2} \text { exper }+\beta_{3} \text { tenure }+\beta_{4} \text { Sibs }+\beta_{5} \text { Brthord }+\beta_{6} f e d u c+\beta_{7}(\text { meduc }+f e d u c)+u
$$

wage is measured in dollars per month, educ, exper, tenure, meduc (mother's education) and feduc (father's education) are measured in years. Sibs measures number of siblings, and Brthord measures the order in which the respondent was born ($1=$ first, $2=$ second, etc). The results from estimating this equation are below:

```
    Estimate Std. Error t value Pr(>|t|)
```



```
--
Residual standard error: 0.3745 on 655 degrees of freedom
Multiple R-squared: 0.1835, Adjusted R-squared: 0.1748
F-statistic: 21.03 on 7 and 655 DF, SSR = 91.84
```

a.) Please construct and interpret a 95% confidence interval for the coefficient on educ. ($\mathbf{1 0}$ Points)
b.) Using the 93% confidence level, test whether the coefficient on tenure is significantly different from zero. Please state your null and alternative hypotheses, and briefly interpret the result. ($\mathbf{1 0}$ Points)
c.) Suppose that I claim that mother's education has a significant effect on wages. What is the probability that I'm wrong? Please state the null and alternative hypotheses, and show your work! (10 Points)
d.) Using the 99% confidence level, please test the hypothesis that the effect of feduc is significantly different than the effect of meduc. Please state your null and alternative hypotheses, and show your work! (10 Points)
e.) The variables Sibs and Brthord take on only integer values, and thus taking derivatives is a bit coarse. So, you decide to leave them out and see what happens to other estimates. The results are below:

```
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
```



```
---
Residual standard error: 0.3745 on 657 degrees of freedom
Multiple R-squared: 0.1806, Adjusted R-squared: 0.1744
F-statistic: 28.96 on 5 and 657 DF, SSR = 92.17
```

Do the variables Sibs and Brthord have a joint effect on wages? Please state your null and alternative hypotheses, and test the null against the alternative at the 95% level. (10 Points)

Problem 2 (15 Points)

The Residential Energy Consumption Survey is put out by the US Department of Energy every few years. It surveys a representative sample of residents, their energy use, their appliance ownership, and their characteristics (income, family size, etc...). Using the 2005 version of the survey, and restricting the sample to California residents, I estimate the following equation:

$$
\log (K W H)=\beta_{0}+\beta_{1} \log (\text { Income })+\beta_{2} \text { Size } e+u
$$

Here, $K W H$ is kilowatt-hours of energy consumption, Income is household income, and Size is the number of people in the household. The results from estimating the above equation are as follows:

```
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
```



```
Residual standard error: 0.5533 on 405 degrees of freedom
Multiple R-squared: 0.1929,Adjusted R-squared: 0.1889
F-statistic: 48.4 on 2 and 405 DF, SSR = 123.97
```

a.) Do the variables of the model explain $\log (K W H)$? Please state your null and alternative hypotheses, and test the null against the alternative at the 95% level (5 Points).
b.) I wish to predict energy consumption for a family that earns $\$ 100,000$ a year and has 5 people in the household. Please derive a new equation that allows me to generate this prediction and a standard error for the prediction. Show your work!!! ($\mathbf{1 0}$ Points)

		0.5000									
		0.5398	0.5438	0.547	0.5517	0	0.5596	0.5636	0.5675		
		0.5793	0.583	0.	0.5910	0.594	0.5987	0.6026	0.6064	03	
		0.6179	0	0.	0.6293		8	0.6406	3	0	
		O.	0	-	-	0	0.6736		8	4	
		0.6915		0	0.7019	0	0.7088				
		0		0	0		0.7422	0.7454	6		
0.7		0	0	0.7642	0	0	0.7734	0.7764	4	0.7823	
0.8		0	0.7	0	0	0.	0.8023	0.8051	0.8078		
0.9		0	0	0	0	0	0.8289	0.8315	0.8340	5	
1.0		0.8	0	0	0	0	0.8531	0.8554	0.8577	0.8599	
		0.	0.	0.	0.	0.	0.8749	0	0		
1		0.8849	0	0.888	0.	0.	0.8944	0	0.8980	97	
		0	0	0	0	0.	0		7		
		0.9192	0	0	0.	0.	0.9265	0.9279	0.9292	06	
1.5		0.9332	0.9345	0.	0.	0.	0.9394	0.9406	0.9418	0.9429	
1. 6		0.9452	0.	0.	0	0	05	0.9515	5	5	
1.7		0.9	0.	0.	0.9	0.	0.959	0	0.	0.9625	0.963
1.8		0.9	0.	0	0	0	0.9678	0.96	0.9693	0.9699	
1.9		0.9	0.9	0.	0	0.	0.9	0.9750	0.9756		
2.0		0.9	0		0	0	0	0.9803	0.9808	0.9812	
2.1		0.9	0.9	0.9	0.9	0.	0.9	0.	0.9850	.	
2		0.	0.	0.	0.		0.9		0.9884	0.	
2.		0.	0.	0	0	0.	0.9906	0			
2		0.9	0.	0.9922	0.	0.	0.9929		1		
2		0.9938	0.	0.9941	0.	0	0.9946	0.	0.9949	0.9951	
2.6		0.9953	0.99	0	0.99	0.9	0	0	0.996	0.9963	
2.7		0.9965	0.9	0.	0.9968	0.9969	0.9970		0.9972	0.9973	
2.8		0.9974	0.9	0.9	0.99	0.9	0.9978	0.	0.9979	0.9980	
2.9		0.9981	0.9982	0.9982	0.9983	0.	0.9984	0	0.9985	.	
3.0		0.9987	0.998	0.998	0.9	0.	0.9989	0.9989	0.9989	0.9990	

